Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
1.
Viruses ; 16(2)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38400041

RESUMO

Lassa virus (LASV) is a zoonotic pathogen endemic throughout western Africa and is responsible for a human disease known as Lassa fever (LF). Historically, LASV has been emphasized as one of the greatest public health threats in West Africa, with up to 300,000 cases and 5000 associated deaths per year. This, and the fact that the disease has been reported in travelers, has driven a rapid production of various vaccine candidates. Several of these vaccines are currently in clinical development, despite limitations in understanding the immune response to infection. Alarmingly, the host immune response has been implicated in the induction of sensorineural hearing loss in LF survivors, legitimately raising safety questions about any future vaccines as well as efficacy in preventing potential hearing loss. The objective of this article is to revisit the importance and prevalence of LF in West Africa, with focus on Nigeria, and discuss current therapeutic approaches and ongoing vaccine development. In addition, we aim to emphasize the need for more scientific studies relating to LF-associated hearing loss, and to promote critical discussion about potential risks and benefits of vaccinating the population in endemic regions of West Africa.


Assuntos
Perda Auditiva Neurossensorial , Febre Lassa , Vacinas Virais , Humanos , Febre Lassa/epidemiologia , Febre Lassa/prevenção & controle , Vírus Lassa , África Ocidental/epidemiologia , Gerenciamento Clínico
2.
Neurosci Lett ; 825: 137692, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38382798

RESUMO

Virtual reality (VR) is a computer-created 3D environment with a focus on realistic scenes and pictures created for entertainment, medical and/or educational and training purposes. One of the major side effects of VR immersion reported in the scientific literature, media and social media is Visually Induced Motion Sickness (VIMS), with clinical symptoms such as disorientation, nausea, and oculomotor discomfort. VIMS is mostly caused by the discrepancy between the visual and vestibular systems and can lead to dizziness, nausea, and disorientation. In this study, we present one potential novel solution to combat motion sickness in VR, showcasing a significant reduction of nausea in VR users employing the META Quest 2 headsets in conjunction with a whole-body controller. Using a neurodigital approach, we facilitate a more immersive and comfortable VR experience. Our findings indicate a marked reduction in VR-induced nausea, paving the way to promote VR technology for broader applications across various fields.

3.
J Virol ; 98(2): e0196423, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38289100

RESUMO

Guanarito virus (GTOV) is the causative agent of Venezuelan hemorrhagic fever. GTOV belongs to the genus Mammarenavirus, family Arenaviridae and has been classified as a Category A bioterrorism agent by the United States Centers for Disease Control and Prevention. Despite being a high-priority agent, vaccines and drugs against Venezuelan hemorrhagic fever are not available. GTOV S-26764, isolated from a non-fatal human case, produces an unclear cytopathic effect (CPE) in Vero cells, posing a significant obstacle to research and countermeasure development efforts. Vero cell-adapted GTOV S-26764 generated in this study produced clear CPE and demonstrated rapid growth and high yield in Vero cells compared to the original GTOV S-26764. We developed a reverse genetics system for GTOV to study amino acid changes acquired through Vero cell adaptation and leading to virus phenotype changes. The results demonstrated that E1497K in the L protein was responsible for the production of clear plaques as well as enhanced viral RNA replication and transcription efficiency. Vero cell-adapted GTOV S-26764, capable of generating CPE, will allow researchers to easily perform neutralization assays and anti-drug screening against GTOV. Moreover, the developed reverse genetics system will accelerate vaccine and antiviral drug development.IMPORTANCEGuanarito virus (GTOV) is a rodent-borne virus. GTOV causes fever, prostration, headache, arthralgia, cough, sore throat, nausea, vomiting, diarrhea, epistaxis, bleeding gums, menorrhagia, and melena in humans. The lethality rate is 23.1% or higher. Vero cell-adapted GTOV S-26764 shows a clear cytopathic effect (CPE), whereas the parental virus shows unclear CPE in Vero cells. We generated a reverse genetics system to rescue recombinant GTOVs and found that E1497K in the L protein was responsible for the formation of clear plaques as well as enhanced viral RNA replication and transcription efficiency. This reverse genetic system will accelerate vaccine and antiviral drug developments, and the findings of this study contribute to the understanding of the function of GTOV L as an RNA polymerase.


Assuntos
Arenaviridae , Genética Reversa , Animais , Feminino , Humanos , Arenaviridae/genética , Infecções por Arenaviridae/virologia , Arenavirus do Novo Mundo/genética , Chlorocebus aethiops , Febres Hemorrágicas Virais/virologia , Fenótipo , Genética Reversa/métodos , Vacinas , Células Vero
4.
Entropy (Basel) ; 25(10)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37895584

RESUMO

The SARS-CoV-2 virus, the causative agent of COVID-19, is known for its genetic diversity. Virus variants of concern (VOCs) as well as variants of interest (VOIs) are classified by the World Health Organization (WHO) according to their potential risk to global health. This study seeks to enhance the identification and classification of such variants by developing a novel bioinformatics criterion centered on the virus's spike protein (SP1), a key player in host cell entry, immune response, and a mutational hotspot. To achieve this, we pioneered a unique phylogenetic algorithm which calculates EIIP-entropy as a distance measure based on the distribution of the electron-ion interaction potential (EIIP) of amino acids in SP1. This method offers a comprehensive, scalable, and rapid approach to analyze large genomic data sets and predict the impact of specific mutations. This innovative approach provides a robust tool for classifying emergent SARS-CoV-2 variants into potential VOCs or VOIs. It could significantly augment surveillance efforts and understanding of variant characteristics, while also offering potential applicability to the analysis and classification of other emerging viral pathogens and enhancing global readiness against emerging and re-emerging viral pathogens.

5.
Virology ; 587: 109867, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37633192

RESUMO

Lujo virus (LUJV), which belongs to Mammarenavirus, family Arenaviridae, has emerged as a pathogen causing severe hemorrhagic fever with high mortality. Currently, there are no effective treatments for arenaviruses, including LUJV. Here, we screened chemical compound libraries of Food and Drug Administration (FDA)-approved drugs and G protein-coupled receptor-associated drugs to identify effective antivirals against LUJV targeting cell entry using a vesicular stomatitis virus-based pseudotyped virus bearing the LUJV envelope glycoprotein (GP). Cannabinoid receptor 1 (CB1) antagonists, such as rimonabant, AM251 and AM281, have been identified as robust inhibitors of LUJV entry. The IC50 of rimonabant was 0.26 and 0.53 µM in Vero and Huh7 cells, respectively. Analysis of the cell fusion activity of the LUJV GP in the presence of CB1 inhibitors revealed that these inhibitors suppressed the fusion activity of the LUJV GP. Moreover, rimonabant, AM251 and AM281 reduced the infectivity of authentic LUJV in vitro, suggesting that the antiviral activity of CB1 antagonists against LUJV is mediated, at least in part, by inhibition of the viral entry, especially, membrane fusion. These findings suggest promising candidates for developing new therapies against LUJV infections.


Assuntos
Infecções por Arenaviridae , Arenaviridae , Lujo virus , Humanos , Chlorocebus aethiops , Animais , Lujo virus/metabolismo , Rimonabanto/farmacologia , Rimonabanto/metabolismo , Infecções por Arenaviridae/metabolismo , Internalização do Vírus , Receptores de Canabinoides/metabolismo , Células Vero
6.
Front Immunol ; 14: 1172792, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37334351

RESUMO

Junin virus (JUNV) is a member of the Arenaviridae family of viruses and is the pathogen responsible for causing Argentine hemorrhagic fever, a potentially lethal disease endemic to Argentina. A live attenuated vaccine for human use, called Candid#1, is approved only in Argentina. Candid#1 vaccine strain of Junin virus was obtained through serial passage in mouse brain tissues followed by passage in Fetal Rhesus macaque lung fibroblast (FRhL) cells. Previously, the mutations responsible for attenuation of this virus in Guinea pigs were mapped in the gene encoding for glycoprotein precursor (GPC) protein. The resulting Candid#1 glycoprotein complex has been shown to cause endoplasmic reticulum (ER) stress in vitro resulting in the degradation of the GPC. To evaluate the attenuating properties of specific mutations within GPC, we created recombinant viruses expressing GPC mutations specific to key Candid#1 passages and evaluated their pathogenicity in our outbred Hartley guinea pig model of Argentine hemorrhagic fever. Here, we provide evidence that early mutations in GPC obtained through serial passaging attenuate the visceral disease and increase immunogenicity in guinea pigs. Specific mutations acquired prior to the 13th mouse brain passage (XJ13) are responsible for attenuation of the visceral disease while having no impact on the neurovirulence of Junin virus. Additionally, our findings demonstrate that the mutation within an N-linked glycosylation motif, acquired prior to the 44th mouse brain passage (XJ44), is unstable but necessary for complete attenuation and enhanced immunogenicity of Candid#1 vaccine strain. The highly conserved N-linked glycosylation profiles of arenavirus glycoproteins could therefore be viable targets for designing attenuating viruses for vaccine development against other arenavirus-associated illnesses.


Assuntos
Febre Hemorrágica Americana , Vírus Junin , Humanos , Animais , Cobaias , Camundongos , Vírus Junin/genética , Macaca mulatta/metabolismo , Glicoproteínas/metabolismo , Mutação
7.
Microbiol Spectr ; 11(3): e0037823, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37022178

RESUMO

Several viruses have been shown to modulate the transcription factor nuclear factor erythroid 2-related factor 2 (NRF2), the master regulator of redox homeostasis. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for the COVID-19 pandemic, also seems to disrupt the balance between oxidants and antioxidants, which likely contributes to lung damage. Using in vitro and in vivo models of infection, we investigated how SARS-CoV-2 modulates the transcription factor NRF2 and its dependent genes, as well as the role of NRF2 during SARS-CoV-2 infection. We found that SARS-CoV-2 infection downregulates NRF2 protein levels and NRF2-dependent gene expression in human airway epithelial cells and in lungs of BALB/c mice. Reductions in cellular levels of NRF2 seem to be independent of proteasomal degradation and the interferon/promyelocytic leukemia (IFN/PML) pathway. Furthermore, lack of the Nrf2 gene in SARS-CoV-2-infected mice exacerbates clinical disease, increases lung inflammation, and is associated with a trend toward increased lung viral titers, indicating that NRF2 has a protective role during this viral infection. In summary, our results suggest that SARS-CoV-2 infection alters the cellular redox balance by downregulating NRF2 and its dependent genes, which exacerbates lung inflammation and disease, therefore, suggesting that the activation of NRF2 could be explored as therapeutic approach during SARS-CoV-2 infection. IMPORTANCE The antioxidant defense system plays a major function in protecting the organism against oxidative damage caused by free radicals. COVID-19 patients often present with biochemical characteristics of uncontrolled pro-oxidative responses in the respiratory tract. We show herein that SARS-CoV-2 variants, including Omicron, are potent inhibitors of cellular and lung nuclear factor erythroid 2-related factor 2 (NRF2), the master transcription factor that controls the expression of antioxidant and cytoprotective enzymes. Moreover, we show that mice lacking the Nrf2 gene show increased clinical signs of disease and lung pathology when infected with a mouse-adapted strain of SARS-CoV-2. Overall, this study provides a mechanistic explanation for the observed unbalanced pro-oxidative response in SARS-CoV-2 infections and suggests that therapeutic strategies for COVID-19 may consider the use of pharmacologic agents that are known to boost the expression levels of cellular NRF2.


Assuntos
Antioxidantes , COVID-19 , Humanos , Camundongos , Animais , Antioxidantes/metabolismo , SARS-CoV-2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Modelos Animais de Doenças , Pandemias , COVID-19/patologia , Pulmão , Células Epiteliais
8.
PLOS Glob Public Health ; 3(4): e0000685, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37097989

RESUMO

Hearing loss is the third leading cause of years lived with disability. Approximately 1.4 billion people have hearing loss, of which 80% reside in low- and middle-income countries with limited audiology and otolaryngology care available to them. The objective of this study was to estimate period prevalence of hearing loss and audiogram patterns of patients attending an otolaryngology clinic in North Central Nigeria. A 10-year retrospective cohort study was carried out analyzing 1507 patient records of pure tone audiograms of patients at the otolaryngology clinic at Jos University Teaching Hospital, Plateau State, Nigeria. Prevalence of hearing loss of moderate or higher grade increased significantly and steadily after age 60. Compared to other studies, there was a higher prevalence of overall sensorineural hearing loss (24-28% in our study compared to 1.7-8.4% globally) and higher proportions of the flat audiogram configuration among the younger age patients (40% in younger patients compared to 20% in patients older than 60 years). The higher prevalence of the flat audiogram configuration compared to other parts of the world may be suggestive of an etiology specific to this region, such as the endemic Lassa Fever and Lassa virus infection in addition to cytomegalovirus or other viral infections associated with hearing loss.

9.
bioRxiv ; 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-37090668

RESUMO

Lassa virus (LASV), a mammarenavirus from Arenaviridae, is the causative agent of Lassa fever (LF) endemic in West Africa. Currently, there are no vaccines or antivirals approved for LF. The RNA-dependent RNA polymerases (RdRp) of RNA viruses are error-prone. As a negative-sense RNA virus, how LASV copes with errors in RNA synthesis and ensures optimal RNA replication are not well elucidated. LASV nucleoprotein (NP) contains a DEDDH 3'-to-5' exoribonuclease motif (ExoN), which is known to be essential for LASV evasion of the interferon response via its ability to degrade virus-derived double-stranded RNA. Herein, we present evidence that LASV NP ExoN has an additional function important for viral RNA replication. We rescued an ExoN-deficient LASV mutant (ExoN- rLASV) by using a reverse genetics system. Our data indicated that abrogation of NP ExoN led to impaired LASV growth and RNA replication in interferon-deficient cells as compared with wild-type rLASV. By utilizing PacBio Single Molecule, Real-Time (SMRT) long-read sequencing technology, we found that rLASV lacking ExoN activity was prone to producing aberrant viral genomic RNA with structural variations. In addition, NP ExoN deficiency enhanced LASV sensitivity to mutagenic nucleoside analogues in virus titration assay. Next-generation deep sequencing analysis showed increased single nucleotide substitution in ExoN- LASV RNA following mutagenic 5-flurouracil treatment. In conclusion, our study revealed that LASV NP ExoN is required for efficient viral RNA replication and mutation control. Among negative-sense RNA viruses, LASV NP is the first example that a viral protein, other than the RdRp, contributes to reduce errors in RNA replication and maintain genomic RNA integrity. These new findings promote our understanding of the basics of LASV infection and inform antiviral and vaccine development.

10.
Vaccines (Basel) ; 11(3)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36992218

RESUMO

The viral family Arenaviridae contains several members that cause severe, and often lethal, diseases in humans. Several highly pathogenic arenaviruses are classified as Risk Group 4 agents and must be handled in the highest biological containment facility, biosafety level-4 (BSL-4). Vaccines and treatments are very limited for these pathogens. The development of vaccines is crucial for the establishment of countermeasures against highly pathogenic arenavirus infections. While several vaccine candidates have been investigated, there are currently no approved vaccines for arenavirus infection except for Candid#1, a live-attenuated Junin virus vaccine only licensed in Argentina. Current platforms under investigation for use include live-attenuated vaccines, recombinant virus-based vaccines, and recombinant proteins. We summarize here the recent updates of vaccine candidates against arenavirus infections.

11.
Cell Mol Gastroenterol Hepatol ; 15(5): 1161-1179, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36736893

RESUMO

BACKGROUND & AIMS: T helper 1 (Th1) effector cells are implicated in inflammatory bowel disease. The stimulator of interferon genes (STING), an intracellular DNA sensor, has been shown to regulate infection and various cancers. However, whether and how intrinsic STING signaling in Th1 cells regulates colitis is still unknown. METHODS: Dextran sodium sulfate-induced colitis and wild-type/STING-deficient CD4+T cell adoptive transfer models were used to analyze the role of STING in regulating colitis. The effect of STING on Th1 cells was determined by flow cytometry, RNA sequencing, metabolic assays, and mitochondrial functions. 16S ribosomal RNA sequencing and germ-free mice were used to investigate whether the microbiota were involved. The in vivo effect of STING agonist in murine colitis was determined. The expression and role of STING in human T cells were also determined. RESULTS: Activation of STING transformed proinflammatory IFNγ+Th1 cells into IL-10+IFNγ+Th1 cells, which were dramatically less pathogenic in inducing colitis. STING promoted Th1 interleukin (IL)-10 production by inducing STAT3 translocation into nuclear and mitochondria, which promoted Blimp1 expression and mitochondrial oxidation, respectively. Blockade of glucose or glutamine-derived oxidation, but not lipid-derived oxidation, suppressed STING induction of IL-10. Gut microbiota were changed in STING-/- mice, but the altered microbiota did not mediate STING effects on intestinal CD4+T cell production of IL-10. Translationally, STING agonists suppressed both acute and chronic colitis. Intestinal STING+ CD4+T cells were increased in inflammatory bowel disease patients, and STING agonists upregulated IL-10 production in human CD4+T cells. CONCLUSIONS: These findings establish a crucial role of T cell-intrinsic STING in switching off the pathogenic programs of Th1 cells in intestinal inflammation.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Animais , Humanos , Camundongos , Colite/patologia , Interleucina-10 , Intestinos/patologia , Células Th1
12.
Front Biosci (Landmark Ed) ; 28(1): 8, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36722278

RESUMO

BACKGROUND: Drug resistance is a critical problem in health care that affects therapy outcomes and requires new approaches to drug design. SARS-CoV-2 Mpro mutations are of concern as they can potentially reduce therapeutic efficacy. Viral infections are amongst the many disorders for which nutraceuticals have been employed as an adjunct therapy. The aim of this study was to examine the potential in vitro activity of L-arginine and vitamin C against SARS-CoV-2 Mpro. METHODS: The Mpro inhibition assay was developed by cloning, expression, purification, and characterization of Mpro. Selected compounds were then screened for protease inhibition. RESULTS: L-arginine was found to be active against SARS-CoV-2 Mpro, while a vitamin C/L-arginine combination had a synergistic antiviral action against Mpro. These findings confirm the results of our previous in silico repurposing study that showed L-arginine and vitamin C were potential Mpro inhibitors. Moreover, they suggest a possible molecular mechanism to explain the beneficial effect of arginine in COVID patients. CONCLUSIONS: The findings of the current study are important because they help to identify COVID-19 treatments that are efficient, inexpensive, and have a favorable safety profile. The results of this study also suggest a possible adjuvant nutritional strategy for COVID-19 that could be used in conjunction with pharmacological agents.


Assuntos
Arginina , Ácido Ascórbico , Proteases 3C de Coronavírus , SARS-CoV-2 , Humanos , Arginina/farmacologia , Ácido Ascórbico/farmacologia , COVID-19 , Suplementos Nutricionais , SARS-CoV-2/efeitos dos fármacos , Proteases 3C de Coronavírus/antagonistas & inibidores
13.
Int J Mol Sci ; 24(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36768280

RESUMO

Finding an effective drug to prevent or treat COVID-19 is of utmost importance in tcurrent pandemic. Since developing a new treatment takes a significant amount of time, drug repurposing can be an effective option for achieving a rapid response. This study used a combined in silico virtual screening protocol for candidate SARS-CoV-2 PLpro inhibitors. The Drugbank database was searched first, using the Informational Spectrum Method for Small Molecules, followed by molecular docking. Gramicidin D was selected as a peptide drug, showing the best in silico interaction profile with PLpro. After the expression and purification of PLpro, gramicidin D was screened for protease inhibition in vitro and was found to be active against PLpro. The current study's findings are significant because it is critical to identify COVID-19 therapies that are efficient, affordable, and have a favorable safety profile.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Gramicidina , Simulação de Acoplamento Molecular , Bases de Dados Factuais , Inibidores de Proteases/farmacologia , Antivirais/farmacologia
14.
Biomedicines ; 10(10)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36289695

RESUMO

Lassa virus (LASV) is a zoonotic virus endemic to western Africa that can cause a potentially lethal and hemorrhagic disease, Lassa fever (LF). Survivors suffer a myriad of sequelae, most notably sudden onset sensorineural hearing loss (SNHL), the mechanism of which remains unclear. Unfortunately, studies aiming to identify the mechanism of these sequelae are limited due to the biosafety level 4 (BSL4) requirements of LASV itself. ML29, a reassortant virus proposed as an experimental vaccine candidate against LASV, is potentially an ideal surrogate model of LF in STAT1-/- mice due to similar phenotype in these animals. We intended to better characterize ML29 pathogenesis and potential sequelae in this animal model. Our results indicate that while both CD4 and CD8 T cells are responsible for acute disease in ML29 infection, ML29 induces significant hearing loss in a mechanism independent of either CD4 or CD8 T cells. We believe that this model could provide valuable information for viral-associated hearing loss in general.

15.
Front Cell Infect Microbiol ; 12: 1023557, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36310868

RESUMO

Macrophages contribute to Ebola virus disease through their susceptibility to direct infection, their multi-faceted response to ebolaviruses, and their association with pathological findings in tissues throughout the body. Viral attachment and entry factors, as well as the more recently described influence of cell polarization, shape macrophage susceptibility to direct infection. Moreover, the study of Toll-like receptor 4 and the RIG-I-like receptor pathway in the macrophage response to ebolaviruses highlight important immune signaling pathways contributing to the breadth of macrophage responses. Lastly, the deep histopathological catalogue of macrophage involvement across numerous tissues during infection has been enriched by descriptions of tissues involved in sequelae following acute infection, including: the eye, joints, and the nervous system. Building upon this knowledge base, future opportunities include characterization of macrophage phenotypes beneficial or deleterious to survival, delineation of the specific roles macrophages play in pathological lesion development in affected tissues, and the creation of macrophage-specific therapeutics enhancing the beneficial activities and reducing the deleterious contributions of macrophages to the outcome of Ebola virus disease.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Humanos , Doença pelo Vírus Ebola/metabolismo , Ebolavirus/fisiologia , Macrófagos
16.
Sci Rep ; 12(1): 15517, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36109550

RESUMO

Coronavirus disease 2019 (COVID-19) continues to significantly impact the global population, thus countermeasure platforms that enable rapid development of therapeutics against variants of SARS-CoV-2 are essential. We report use of a phage display human antibody library approach to rapidly identify neutralizing antibodies (nAbs) against SARS-CoV-2. We demonstrate the binding and neutralization capability of two nAbs, STI-2020 and STI-5041, against the SARS-CoV-2 WA-1 strain as well as the Alpha and Beta variants. STI-2020 and STI-5041 were protective when administered intravenously or intranasally in the golden (Syrian) hamster model of COVID-19 challenged with the WA-1 strain or Beta variant. The ability to administer nAbs intravenously and intranasally may have important therapeutic implications and Phase 1 healthy subjects clinical trials are ongoing.


Assuntos
COVID-19 , Animais , Anticorpos Monoclonais , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/uso terapêutico , Cricetinae , Humanos , Mesocricetus , Testes de Neutralização , SARS-CoV-2
17.
Molecules ; 27(18)2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36144664

RESUMO

Viral infection almost invariably causes metabolic changes in the infected cell and several types of host cells that respond to the infection. Among metabolic changes, the most prominent is the upregulated glycolysis process as the main pathway of glucose utilization. Glycolysis activation is a common mechanism of cell adaptation to several viral infections, including noroviruses, rhinoviruses, influenza virus, Zika virus, cytomegalovirus, coronaviruses and others. Such metabolic changes provide potential targets for therapeutic approaches that could reduce the impact of infection. Glycolysis inhibitors, especially 2-deoxy-D-glucose (2-DG), have been intensively studied as antiviral agents. However, 2-DG's poor pharmacokinetic properties limit its wide clinical application. Herein, we discuss the potential of 2-DG and its novel analogs as potent promising antiviral drugs with special emphasis on targeted intracellular processes.


Assuntos
COVID-19 , Infecção por Zika virus , Zika virus , Antivirais/farmacologia , Antivirais/uso terapêutico , Desoxiglucose/farmacologia , Glucose , Glicólise , Humanos , Manose , SARS-CoV-2 , Infecção por Zika virus/tratamento farmacológico
18.
Proc Natl Acad Sci U S A ; 119(36): e2206104119, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36037386

RESUMO

Viral hemorrhagic fevers caused by members of the order Bunyavirales comprise endemic and emerging human infections that are significant public health concerns. Despite the disease severity, there are few therapeutic options available, and therefore effective antiviral drugs are urgently needed to reduce disease burdens. Bunyaviruses, like influenza viruses (IFVs), possess a cap-dependent endonuclease (CEN) that mediates the critical cap-snatching step of viral RNA transcription. We screened compounds from our CEN inhibitor (CENi) library and identified specific structural compounds that are 100 to 1,000 times more active in vitro than ribavirin against bunyaviruses, including Lassa virus, lymphocytic choriomeningitis virus (LCMV), and Junin virus. To investigate their inhibitory mechanism of action, drug-resistant viruses were selected in culture. Whole-genome sequencing revealed that amino acid substitutions in the CEN region of drug-resistant viruses were located in similar positions as those of the CEN α3-helix loop of IFVs derived under drug selection. Thus, our studies suggest that CENi compounds inhibit both bunyavirus and IFV replication in a mechanistically similar manner. Structural analysis revealed that the side chain of the carboxyl group at the seventh position of the main structure of the compound was essential for the high antiviral activity against bunyaviruses. In LCMV-infected mice, the compounds significantly decreased blood viral load, suppressed symptoms such as thrombocytopenia and hepatic dysfunction, and improved survival rates. These data suggest a potential broad-spectrum clinical utility of CENis for the treatment of both severe influenza and hemorrhagic diseases caused by bunyaviruses.


Assuntos
Antivirais , Endonucleases , Orthobunyavirus , Animais , Antivirais/farmacologia , Avaliação Pré-Clínica de Medicamentos , Farmacorresistência Viral/efeitos dos fármacos , Farmacorresistência Viral/genética , Endonucleases/antagonistas & inibidores , Humanos , Camundongos , Orthobunyavirus/efeitos dos fármacos , Orthobunyavirus/genética , Orthobunyavirus/metabolismo , Replicação Viral/efeitos dos fármacos
19.
Res Sq ; 2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35665009

RESUMO

Compromised DNA repair capacity of individuals could play a critical role in the severity of SARS-CoV-2 infection-induced COVID-19. We therefore analyzed the expression of DNA repair genes in publicly available transcriptomic datasets of COVID-19 patients and found that the level of NEIL2, an oxidized base specific mammalian DNA glycosylase, is particularly low in the lungs of COVID-19 patients displaying severe symptoms. Downregulation of pulmonary NEIL2 in CoV-2-permissive animals and postmortem COVID-19 patients validated these results. To investigate the potential roles of NEIL2 in CoV-2 pathogenesis, we infected Neil2-null (Neil2-/-) mice with a mouse-adapted CoV-2 strain and found that Neil2-/- mice suffered more severe viral infection concomitant with increased expression of proinflammatory genes, which resulted in an enhanced mortality rate of 80%, up from 20% for the age matched Neil2+/+ cohorts. We also found that infected animals accumulated a significant amount of damage in their lung DNA. Surprisingly, recombinant NEIL2 delivered into permissive A549-ACE2 cells significantly decreased viral replication. Toward better understanding the mechanistic basis of how NEIL2 plays such a protective role against CoV-2 infection, we determined that NEIL2 specifically binds to the 5'-UTR of SARS-CoV-2 genomic RNA and blocks protein synthesis. Together, our data suggest that NEIL2 plays a previously unidentified role in regulating CoV-2-induced pathogenesis, via inhibiting viral replication and preventing exacerbated proinflammatory responses, and also via its well-established role of repairing host genome damage.

20.
PLoS Pathog ; 18(5): e1010557, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35605008

RESUMO

Lassa virus (LASV) is the causative agent of Lassa fever (LF), which presents as a lethal hemorrhagic disease in severe cases. LASV-induced hearing loss in survivors is a huge socioeconomic burden, however, the mechanism(s) leading to hearing loss is unknown. In this study, we evaluate in a mouse LF model the auditory function using auditory brainstem response (ABR) and distortion product otoacoustic emissions (DPOAE) to determine the mechanisms underlying LASV-induced hearing loss. In the process, we pioneered measures of ABR and DPOAE tests in rodents in biosafety level 4 (BSL-4) facilities. Our T cell depletion studies demonstrated that CD4 T-cells play an important role in LASV-induced hearing loss, while CD8 T-cells are critical for the pathogenicity in the acute phase of LASV infection. Results presented in this study may help to develop future countermeasures against acute disease and LASV-induced hearing loss.


Assuntos
Perda Auditiva , Febre Lassa , Animais , Linfócitos T CD4-Positivos , Modelos Animais de Doenças , Vírus Lassa , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...